

**AUTEURS:** 

DATE:

DE CARVALHO LOPES Bruno **BELAHA Sidahmed** LE CLAINCHE Killian

07/01/2025

## Sommaire

| ١.   | ١r | ntroduction                          | 3 |
|------|----|--------------------------------------|---|
|      |    | rotocoles de sécurité Wi-Fi analysés |   |
| III. |    | Critères de comparaison              | 3 |
| IV.  |    | Analyse détaillée des protocoles     | 4 |
| Α    | .) | WEP (Wired Equivalent Privacy)       | 4 |
| В    | )  | WPA (Wi-Fi Protected Access)         | 4 |
| С    | ;) | WPA2 (Wi-Fi Protected Access 2)      | 5 |
| D    | )) | WPA3 (Wi-Fi Protected Access 3)      | 6 |
| V.   | Ta | ableau comparatif                    | 6 |
| VI.  |    | Conclusion                           | 7 |

# Etude comparative des différents protocoles de sécurité wifi

#### Introduction

Le Wi-Fi est une technologie omniprésente qui connecte des milliards d'appareils dans le monde. Cependant, sa nature sans fil l'expose à des risques importants, notamment :

- Intrusions non autorisées : Accès à un réseau par des attaquants non légitimes.
- **Vol de données** : Interception des communications entre un appareil et le point d'accès.
- **Déni de service (DoS)**: Saturation du réseau par des attaquants.

Cette étude vise à analyser et comparer les principaux protocoles de sécurité Wi-Fi pour identifier les options les plus adaptées selon les besoins spécifiques.

## Protocoles de sécurité Wi-Fi analysés

Les protocoles Wi-Fi ont évolué au fil des ans pour répondre aux nouvelles menaces :

- 1. **WEP (Wired Equivalent Privacy)**: Premier protocole standardisé pour la sécurité des réseaux Wi-Fi.
- 2. **WPA (Wi-Fi Protected Access)**: Une solution transitoire pour corriger les failles de WEP.
- 3. **WPA2 (Wi-Fi Protected Access 2)**: Une amélioration majeure apportant des algorithmes de chiffrement robustes.
- 4. **WPA3 (Wi-Fi Protected Access 3)**: Le protocole actuel, conçu pour offrir une sécurité avancée adaptée aux nouveaux usages.

## Critères de comparaison

Voici les critères d'analyse retenus pour cette étude :

- Chiffrement et authentification : Algorithmes et processus utilisés pour sécuriser les données.
- 2. Vulnérabilités connues : Failles d'exploitation publiées ou détectées.
- 3. **Performance**: Impact sur les ressources matérielles et la vitesse de transmission.

- 4. **Compatibilité**: Prise en charge par les appareils récents et anciens.
- 5. **Facilité de mise en œuvre** : Simplicité pour les utilisateurs finaux ou les administrateurs.
- 6. Cas d'utilisation recommandé : Contextes où le protocole est le plus pertinent.

## Analyse détaillée des protocoles

### WEP (Wired Equivalent Privacy)

• **Résumé historique** : Introduit en 1997 avec la norme IEEE 802.11 pour offrir une sécurité équivalente à celle des réseaux filaires.

### • Technologie utilisée :

- Chiffrement basé sur RC4.
- o Longueur des clés : 40 bits (standard) ou 104 bits (amélioré).
- o Utilisation d'un vecteur d'initialisation (IV) de 24 bits.

#### Forces:

- o Compatibilité étendue, même sur les équipements très anciens.
- o Facile à configurer.

#### Faiblesses:

- Le chiffrement RC4 est obsolète et vulnérable.
- Le vecteur d'initialisation est trop court, entraînant des collisions fréquentes.
- Vulnérabilités: FMS (Fluhrer, Mantin et Shamir), cracking rapide avec des outils comme Aircrack-NG.
- Statut actuel : Complètement abandonné par la Wi-Fi Alliance et déconseillé dans tous les cas.

#### WPA (Wi-Fi Protected Access)

• Résumé historique : Introduit en 2003 comme une solution temporaire à WEP.

#### • Technologie utilisée :

o Chiffrement TKIP (Temporal Key Integrity Protocol) basé sur RC4.

 Mise à jour dynamique des clés pour empêcher les attaques de rejouement.

#### • Forces:

- o Corrige certaines failles de WEP, notamment les collisions d'IV.
- Relativement facile à déployer sur les équipements WEP avec mise à jour logicielle.

#### Faiblesses:

- Le protocole RC4 reste faible par conception.
- Vulnérable à des attaques comme Michael (exploit des checksum) et attaques par dictionnaire.

#### • Vulnérabilités majeures :

- Vulnérable aux attaques par brute force sur le protocole PSK (Pre-Shared Key).
- o Man-in-the-Middle et attaques par replay possibles.
- **Statut actuel** : Obsolète, bien que toujours en usage sur des équipements anciens.

#### WPA2 (Wi-Fi Protected Access 2)

• **Résumé historique** : Standard depuis 2004, introduisant des améliorations majeures.

#### • Technologie utilisée :

- Chiffrement AES (Advanced Encryption Standard) avec CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol).
- Deux modes d'utilisation : PSK (clé partagée) pour les environnements domestiques et EAP (Extensible Authentication Protocol) pour les entreprises.

#### • Forces:

- Protection contre les attaques par replay.
- o AES est une norme de chiffrement robuste et largement adoptée.
- o Adapté aux environnements professionnels et domestiques.

#### Faiblesses:

- Vulnérable à certaines attaques (exemple : KRACK Key Reinstallation Attack, découvert en 2017).
- Les clés PSK faibles (courtes ou simples) peuvent être crackées via brute force.
- Statut actuel: Toujours utilisé, mais en transition vers WPA3.

#### WPA3 (Wi-Fi Protected Access 3)

• **Résumé historique** : Lancement en 2018 pour répondre aux failles de WPA2.

#### • Technologie utilisée :

- Chiffrement renforcé basé sur SAE (Simultaneous Authentication of Equals).
- Chiffrement individualisé pour chaque session utilisateur (chiffrement opportuniste).
- o Améliorations pour les appareils IoT via Wi-Fi Easy Connect.

#### • Forces:

- Résistance accrue aux attaques par force brute (avec SAE, une attaque réussie nécessite d'attaquer chaque mot de passe individuellement).
- o Protection contre les attaques de désauthentification.
- o Adapté aux environnements modernes (domotique, IoT).

#### • Faiblesses:

- o Moins de compatibilité avec les anciens appareils.
- Coût potentiellement plus élevé pour la mise à niveau des infrastructures.
- Statut actuel: Recommandé pour toutes les nouvelles installations.

## Tableau comparatif

| Protocole | Année | Chiffrement | Forces | Faiblesses | Statut |
|-----------|-------|-------------|--------|------------|--------|
|           |       |             |        |            | actuel |

| WEP  | 1997 | RC4      | Simplicité,<br>Compatibilité               | Extrêmement vulnérable                       | Abandonné              |
|------|------|----------|--------------------------------------------|----------------------------------------------|------------------------|
| WPA  | 2003 | TKIP/RC4 | Corrige WEP,<br>clé<br>dynamique           | Faible<br>sécurité,<br>attaques<br>possibles | Dépassé                |
| WPA2 | 2004 | AES/CCMP | Sécurité<br>fiable,<br>largement<br>adopté | Vulnérabilités<br>comme<br>KRACK             | Standard<br>courant    |
| WPA3 | 2018 | AES/SAE  | Sécurité<br>avancée                        | Compatibilité<br>limitée, plus<br>coûteux    | Standard<br>recommandé |

## Conclusion

- **WEP** et **WPA** sont à éviter en raison de leur obsolescence et de leur faible sécurité.
- **WPA2** reste adapté à de nombreux contextes, mais il est impératif de l'utiliser avec des mots de passe robustes et de déployer des correctifs pour les vulnérabilités connues (ex. KRACK).
- **WPA3** est la meilleure option pour les nouvelles installations, offrant des améliorations substantielles en termes de sécurité et d'efficacité.